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Abstract. Many Reduced complexity climate models (RCMs) and Earth System Models (ESMs) use prescribed concentrations
or Effective Radiative Forcing (ERF) of Greenhouse Gases (GHGs) and tropospheric aerosols as inputs for projections.
Revisions to these datasets, made in Chapter 7 and Annex III of the Sixth IPCC Assessment Report: The Physical Science
Basis (ARG, 2021) are vital to ensure the accuracy of climate model forecasts. AR6 provided updates to the formulation of
ERF for most GHGs and tropospheric aerosols, relative to values in AR5 (2013). In this work, we provide a comprehensive
assessment of how the changes to the ERF datasets impact projections of future warming, using our multiple linear regression
energy balance RCM, the Empirical Model of Global Climate (EM-GC). We provide an analysis of the rate of human—induced
warming (AAWR) between 1974 and 2014, and Effective Climate Sensitivity (EffCS) from the regression to the observation-
based historical climate record with ERF datasets predating the AR6 report (which we term Baseline Framework) and AR6
ERF data (AR6 Framework). Probabilistic projections on future warming that consider the uncertainty in the magnitude of
climate feedback and ERF from tropospheric aerosols are provided for four policy-relevant Shared Socioeconomic Pathway
(SSP) scenarios. We find AAWR within the AR6 Framework to be 0.18 [0.13 to 0.21 °C decade™!, 5-95% range], a slight
increase to the values 0of 0.16 [0.12 to 0.20 °C decade™'] within the Baseline Framework. The central estimate of EffCS is found
to be nearly identical between the two Frameworks, but a narrower range is found for the AR6 Framework at 2.29 [1.54 to
3.11 °C, 5-95% range] relative to 2.26 [1.45 to 4.37 °C] within the Baseline Framework. We find Equilibrium Climate
Sensitivity (ECS) to be 3.24 [1.92 to 5.15 °C] for the ARG best estimate of the pattern effect. Our estimates of AAWR, EffCS
and ECS are highly consistent with recent studies and observationally constrained CMIP6 model output. Projections of future
warming for the AR6 Framework compared to the Baseline Framework show an increase of 0.2 to 0.4 °C in the end-of century
median warming for the SSP scenarios studied. This increase corresponds to a significantly lowered possibility of
accomplishing the goals of the Paris Agreement (PA). In particular, the SSP2—4.5 scenario, that is widely considered to be
consistent with current climate policies, only offers an 8% chance of accomplishing the PA upper limit of 2.0 °C warming by

the end of the century within the AR6 Framework.
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1 Introduction

The Paris Agreement (PA), negotiated in 2015, established the goal of limiting global warming to 1.5 °C (PA target) relative
to the pre—industrial baseline, with an upper limit of 2.0 °C (PA upper limit). Forecasting the rise in global mean surface
temperature, for various estimates of the future atmospheric abundances of greenhouse gases and aerosols, is important for
assessing the feasibility of accomplishing the goal of the PA.

Numerous modeling efforts focus on assessing the feasibility of various climate policies, and the implications of these
policies on various elements of Earth’s climate. Earth System Models (ESMs) are the most comprehensive climate models
available and are the primary tool of global warming research. Although ESMs are able to compute the atmospheric
concentration of CO; from emissions, most often these models use prescribed time series of atmospheric CO> (Jones et al.,
2016; Lawrence et al., 2016; Meinshausen et al., 2020). For non-CO, GHGs, ESMs of Phase 6 of the Coupled Model
Intercomparison Project (CMIP6), also use prescribed atmospheric concentration trajectories (Meinshausen et al., 2020). While
there is an effort to make ESMs emissions-based for more greenhouse gases (GHGs) (Meinshausen et al., 2024), many ESMs
will need to continue to rely on concentration input for many non-CO, GHGs.

Reduced Complexity Climate Models (RCMs) are used to compute “best estimate” GHG concentration trajectories from
emissions for various scenarios, which can serve as an input to ESMs (Smith et al., 2018a; Meinshausen et al., 2020;
Meinshausen et al., 2024). RCMs require substantially lower computational resources than ESMs and allow the exploration of
a wide variety of possible emissions scenarios. Outputs from RCMs serve as the basis for projections of atmospheric
abundances of CO,, CHa4, N2O and other GHGs that constitute the Shared Socioeconomic Pathways (SSPs) (Meinshausen et
al., 2020).

Chapters 10 (Bindoff et al., 2013) and 11 (Kirtman et al., 2013) of the 2013 IPCC Report (IPCC, 2013b) raised the
possibility that “some CMIPS models have a higher transient response to GHGs and a larger response to other anthropogenic
forcings (dominated by the effects of aerosols) than the real world”. The tendency of ESMs to warm more quickly than the
observed rise in global mean surface temperature (GMST) over the past three to four decades has also been noted for CMIP6
model output (Tokarska et al., 2020b; Zelinka et al., 2020; McBride et al., 2021). Hausfather et al. (2022) recently termed this
tendency the “hot-model problem”. Nicholls et al. (2021) examined future projections of GMST from a suite of RCMs and
concluded that “the most extreme CMIP6 model projections [of GMST] are outside the range of most RCMs’ 5-95th
percentiles [of GMST]”.

The Physical Science Basis document published in 2021 (IPCC, 2021a), commonly known as the Sixth Assessment Report
(AR6), provided important updates to the projections of future abundances of GHGs and aerosols compared to previously

published values in the SSP database (Riahi et al., 2017; Van Vuuren et al., 2017; Fricko et al., 2017; Fujimori et al., 2017,
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Calvin et al., 2017; Kriegler et al., 2017; Rogelj et al., 2018). Furthermore, AR6 also updated values of the effective radiative
forcing (ERF) due to the major GHGs and aerosols relative to the Fifth Assessment Report (ARS) (IPCC, 2013b).

In this paper, we review the changes to the projections of GHGs and aerosols, as well as the ERF formulations adapted by
ARG, and compare to prior SSP-based projections of the radiative forcing due to GHGs and aerosols (Sect. 2.3). Then, we use
our multiple linear regression energy balance RCM, the Empirical Model of Global Climate (EM—GC, Sect. 2.4), (Canty et
al., 2013; Mascioli et al., 2012; Hope et al., 2017; McBride et al., 2021), to assess the implications of the AR6 updates on
Effective Climate Sensitivity (EffCS, Sect. 3.1), the rate of warming due to human activity (Attributable Anthropogenic
Warming Rate, AAWR; Sect. 3.1), and projected future warming (Sect. 3.2) for a large ensemble of aerosol trajectories. A
major strength of our EM—GC is the ability to provide probabilistic forecasts of the future rise in GMST for each SSP scenario,
based upon the uncertainty in climate feedback and the radiative forcing due to tropospheric aerosols (Canty et al., 2013;
Mascioli et al., 2012; Hope et al., 2017; McBride et al., 2021). Therefore, we conclude the paper by comparing the likelihood
of achieving the target (1.5 °C warming in 2100) and upper limit (2.0 °C) of the Paris Agreement within the two frameworks,
for various SSP scenarios (Sect. 3.2).

Previous projections of the GMST anomaly found using our EM-GC (McBride et al., 2021) show good agreement with
results from other RCMs that participated in the reduced complexity model intercomparison project (RCMIP) exercise
(Nicholls et al., 2020; Nicholls et al., 2021). In particular, projections of GMST from our model showed good agreement with
results from the Model for the Assessment of Greenhouse Gas Induced Climate Change (MAGICC7) RCM (Meinshausen et
al.,2011a; Meinshausen et al., 201 1b; Meinshausen et al., 2020), that was used for the computation of GHG trajectories adapted
by AR6. Consequently, the EM—GC simulations presented here should serve as a good reference point for the impact of the
new AR6 ERF time series on projections of the GMST anomaly found using other RCMs.

2 Data and methods
2.1 Shared Socioeconomic Pathway scenarios

Shared Socioeconomic Pathway (SSP) scenarios are used to represent various future outcomes in the emissions of GHGs and
tropospheric aerosols, as well as aerosol precursors. SSP scenarios are denoted with the nomenclature SSPx—y, where x
represents the identifier of the baseline SSP pathway (1-5) related to mitigation and adaptation, and y is the target radiative
forcing (in W m?) at the end of the century (commonly referred to as headline or nameplate RF) (O'Neill et al., 2014). As an
example, SSP1-2.6 aims to keep anthropogenic ERF close to 2.6 W m™? in the year 2100 under a sustainable socioeconomic
pathway. Different baseline SSP pathways associated with the same nameplate RF represent the notion that various
socioeconomic trajectories can lead to a similar end-of-century RF (O'Neill et al., 2016). AR6 provides a detailed description
of nine Tier 1 and Tier 2 (O'Neill et al., 2016) SSP scenarios (Chen et al., 2021). Of these nine scenarios, we extensively
analyze the following four: SSP1-1.9, SSP1-2.6, SSP4-3.4, SSP2—4.5.
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2.2 Modeling framework

We assess the impact on global warming projections of changes to the ERF datasets to GHGs and aerosols introduced by ARG6.
We define two frameworks, a Baseline Framework that represents the state of knowledge prior to AR6, and an AR6 Framework
based on ERF data from Chapter 7 and Annex III of AR6 (Forster et al., 2021; IPCC, 2021b; Smith et al., 2021b; Smith et al.,
2021a).

For the Baseline Framework, ERF for GHGs is primarily based on GHG concentrations from the SSP database (Riahi et
al., 2017; Van Vuuren et al., 2017; Fricko et al., 2017; Fujimori et al., 2017; Calvin et al., 2017; Kriegler et al., 2017; Rogelj
et al., 2018) converted to ERF using the formulae from ARS5, as described in Sect. 2.5.3. The ERF due to tropospheric aerosols
in the Baseline Framework considers six aerosol types: sulfate, mineral dust, ammonium-nitrate, fossil fuel organic carbon,
fossil fuel black carbon and biomass burning organic and black carbon based on data from the Potsdam Institute for Climate
Research (Meinshausen et al., 2011c¢), (Sect. 2.5.3). ERF input data for the AR6 Framework is obtained from Annex III and
Chapter 7 of the AR6 report (Forster et al., 2021; IPCC, 2021b; Smith et al., 2021b; Smith et al., 2021a) as described in Sect.
2.54.

2.3 Effective radiative forcing

Effective Radiative Forcing (ERF) is described as the top-of-the-atmosphere (TOA) energy flux difference (in W m2) due to
an imposed perturbation (Myhre et al., 2013a; Boucher and Randall, 2013; Sherwood et al., 2015; Forster et al., 2021). ERF
accounts for both tropospheric and stratospheric temperature adjustments (Smith et al., 2018b; Forster et al., 2021), and as
such is more representative of the impacts of various forcing agents on the GMST anomaly than stratospheric-temperature-
adjusted RF (SARF) or instantancous RF (IRF) (Forster et al., 2021). ERF describes Earth’s energy imbalance due to
anthropogenic factors such as GHGs and tropospheric aerosols; hence, ERF is connected quantitatively to the anomaly in

GMST that is central to projections of global warming.

2.3.1 Greenhouse gases

ERF from GHGs can be computed from their atmospheric concentrations (Byrne and Goldblatt, 2014). Formulations of Myhre
et al. (1998) based on results from a line-by-line model (Edwards, 1992; Myhre and Stordal, 1997) were the generally accepted
method for converting atmospheric concentrations to radiative forcing for GHGs. These parametrizations were adapted by
multiple IPCC reports (TAR, AR4, ARS) (IPCC, 2001, 2007, 2013b). Updates to these formulations, based on the Oslo line-
by-line model (Myhre et al., 2006) were provided by Etminan et al. (2016) and Meinshausen et al. (2020), with the latter being
adapted into Chapter 7 of the AR6 report (Forster et al., 2021). The formulations by Etminan et al. (2016) and Meinshausen et
al. (2020) account for the band overlaps between CO, and N»O, include shortwave forcing from CHs, and provide an update
to the water vapor continuum. Both of these formulations have their own respective advantages and limitations, as discussed

in Section 2.7 of Meinshausen et al. (2020) and Section 7.SM.1.1 of AR6 (Smith et al., 2021a).
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The AR5 and AR6 formulations are used to compute time series of SARF for each GHG, based on time series of historical
and future concentrations of GHGs. In the AR5 RF formulations, SARF computed with the formulations of Myhre et al. (1998)
was considered to be equal to ERF, based on an analysis of the RF due to CO» by Vial et al. (2013). Since no similar analyses
were available for other GHGs, ERF was considered equal to SARF for all other well-mixed GHGs in AR5 (Forster et al.,
2021). In ARG, tropospheric adjustments for CO,, CH4 and N,O are assessed to be non-zero (see Sections 7.3.2 and 7.3.5.1 of
Forster et al. (2021) for further detail). Consequently, the formulations for ERF given by AR6 allow for tropospheric
adjustments, whereas the formulations given by AR5 allow for only stratospheric adjustments.

Annex III of the AR6 report (IPCC, 2021b) adapted not only the ERF formulae described in Meinshausen et al. (2020),
but also projections for GHG concentrations for various SSP scenarios published in the same paper. Here and throughout, we
consider concentration to be synonymous with volume mixing ratio. The Meinshausen et al. (2020) GHG projections are
provided using version 7 of the Model for the Assessment of Greenhouse Gas Induced Climate Change (MAGICC7) RCM
(Meinshausen et al., 2011a; Meinshausen et al., 201 1b; Meinshausen et al., 2020). Prior to the release of the AR6 report, one
of the most up-to-date sources for GHG concentrations for various SSP scenarios was the SSP database (Riahi et al., 2017,
Van Vuuren et al., 2017; Fricko et al., 2017; Fujimori et al., 2017; Calvin et al., 2017; Kriegler et al., 2017; Rogelj et al., 2018).
These concentration projections were computed with version 6.8 of the MAGICC model, based upon emissions data from
various Integrated Assessment Models (IAMs) (Riahi et al., 2017), that were also published in the SSP database. Meinshausen
et al. (2020) computed the GHG concentrations using the same GHG emissions database with a newer version of the MAGICC
model. MAGICC7 includes several updates and changes to certain gas cycles, as well as the enablement of the permafrost
feedback module of the model, which results in additional emissions of CO, and CH4 from the melting of permafrost.

Figure 1 shows the time evolution of the concentration (Fig. 1a—c) and ERF (Fig. 1d—f) for CO,, CH4 and N,O within the
Baseline and AR6 Frameworks, as well as ERF from tropospheric aerosols (ERFagr), the total ERF from all GHGs, and ERF
from overall anthropogenic activity (Fig. 1g—i). There is a considerable difference between the Baseline and AR6 datasets,
particularly for SSP4—3.4 and SSP2—4.5. Concentrations of CO, are larger within the AR6 Framework by as much as 30 ppm
(Fig. 1a) in the year 2100 compared to the Baseline. Projected concentrations of CHs4 within the AR6 Framework are much
higher for SSP2—4.5 and SSP4-3.4, compared to the Baseline. For the three major GHGs, an increase for the ERF was found
in the AR6 Framework for most SSP scenarios, with a particularly high increase for ERFco, and ERFcus of SSP2—4.5 and
SSP4-3.4 (Fig. 1d—f). This increase can be attributed to a combined effect of the increase in projected GHG concentrations
(Fig. 1a—c) and the updated ERF formulations of Meinshausen et al. (2020), as well as updates to the tropospheric adjustments
of RF (Smith et al., 2018b; Hodnebrog et al., 2020; Forster et al., 2021).
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Figure 1: Concentrations and ERF due to various forcing agents for the Baseline (dashed) and AR6 (solid) frameworks. Colors
represent SSP scenarios, as indicated on the individual panels. (a) Concentration of COsz. (b) Concentration of CHa. (¢c) Concentration
of N20. (d) ERF from COz. (¢) ERF from CHy, including ERF from the enhancement of stratospheric water vapor due to methane.
(f) ERF from N:O. (g) ERF due to tropospheric aerosols. (h) ERF from all GHGs, including halogens and tropospheric O3, as well
as land-use change. (i) Total anthropogenic ERF. Colored circles on the right—hand axis represent the target ERF of each SSP
scenario as indicated in the name of the scenario.

ARG6 adapted the SARF formulations of Meinshausen et al. (2020) for CO,, CH4 and N,O, replacing the formulae of
Myhre et al. (1998) used in previous IPCC Assessment Reports (Table S1). To convert SARFco2 to ERFcop, an additional +5%
tropospheric adjustment was also introduced in AR6 (Forster et al., 2021). This tropospheric adjustment increases ERFco» by
as much as 0.2 Wm2 in the year 2100 for SSP2—4.5. Concentration projections for CO in Annex III of AR6 (IPCC, 2021b;
Smith et al., 2021b) — which are largely based on Meinshausen et al. (2020) — are also higher than the concentration projections
within the SSP Database (Riahi et al., 2017; Fricko et al., 2017; Calvin et al., 2017). Thus, the combination of increased
projections on the concentration of CO, and updates to the conversion of CO, concentrations to ERF introduced in AR6 result
in increased projections of ERFco, within the AR6 Framework relative to the Baseline, for all four SSP scenarios studied (Fig.
1d).

The inclusion of permafrost emissions of methane result in as much as 50 ppb increase in the atmospheric concentration
of methane in 2100, for the scenarios studied in our work (Fig. 3b of Meinshausen et al. (2020)). However, the inclusion of
permafrost emissions does not fully account for the difference in the projected concentration of CH4 between the Baseline and
ARG Frameworks (Fig. 1b).

Updates to the atmospheric lifetime of CH4 were introduced in MAGICC?7 resulting in a shorter average lifetime for low

radiative forcing scenarios, and longer lifetimes for high forcing scenarios (Sect. 2.4.1 of Meinshausen et al. (2020)). This
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update, alongside updates to the parametrization of the CH4 cycle in MAGICC?7 result in the difference between the projected
CHj4 concentrations within the Baseline and AR6 frameworks for SSP4—3.4 and SSP2—4.5 depicted in Fig. 1b. In 2100, the
atmospheric concentration of CHs is projected by Meinshausen et. al. (2020) to be higher by 180 ppb and 400 ppb for SSP2—4.5
and SSP4-3.4, respectively, compared to the projections in the SSP database (Riahi et al., 2017; Fricko et al., 2017; Calvin et
al., 2017). These findings are consistent with Meinshausen et al. (2020) who concluded “the comparison of mid-century CO,
and CH4 concentrations also reveals that the main reason for higher implied warming of SSP4-3.4 in comparison to SSP1-2.6
are elevated CH4 concentrations”.

While the difference in the projected concentration of CHy between our two frameworks is considerable for SSP4—3.4 and
SSP2—-4.5, the increase in ERFcn4 is proportionally smaller in magnitude. The comparably smaller increase in ERFcpg4 is mostly
due to the application of a multiplicative factor of 0.86 used to relate the new SARF formulation of CH4 to ERF. This 14%
reduction offsets a significant portion of the would-be increase in ERF due to CH4 caused by higher projected concentrations
and spectroscopy—based updates to the formulation of SARF (Forster et al., 2021). Section 7.3.2.2 of AR6 (Forster etal., 2021)
assesses the uncertainty in the multiplicative factor used to relate SARF to ERF to be +0.15, which introduces a sizeable new
uncertainty in the radiative forcing of CHy for all of the SSPs. Overall, we find a major increase in the ERFcns within the AR6
Framework compared to the Baseline for SSP4—3.4 and SSP2—4.5, driven by the elevated concentration projections of CHa.
In contrast, differences in ERFcps between the Baseline and AR6 Frameworks for SSP1-1.9 and SSP1-2.6 are quite small.
New parametrizations in MAGICC7 were also introduced for N>O (Meinshausen et al., 2020). These parametrizations result
in a minimal increase in the projected concentrations shown on Fig lc. A small increase in ERFxo is found between the two
frameworks for all four SSP scenarios (Fig. 1f), mostly attributable to the +7 + 13% tropospheric adjustment described in
Section 7.3.2.3 of ARG (Forster et al., 2021).

2.3.2 Tropospheric aerosols and overall anthropogenic ERF

Tropospheric aerosols (AER) exhibit an overall cooling effect on the atmosphere, both by directly reflecting and absorbing
incoming radiation (aerosol direct effect), and through interactions with clouds (aerosol indirect effect) (Forster et al., 2021).
ERF from these two factors is usually denoted ERF.;; and ERF,, respectively. We use ERF agr to denote the total ERF due to
tropospheric aerosols (ERF,i + ERF,).

In ARS5, the best estimate of the ERFagr was assessed to be —0.9 Wm 2, for the time period 1750-2011. In ARG, the best
estimate of ERFarr was determined to be —1.1 Wm™2, between 1750-2019 (Forster et al., 2021). The corresponding 5™ and
95% percentile ranges were —0.1 to —1.9 Wm™ in 2011 and —0.4 to —1.7 Wm? in 2019, for the AR5 and AR6 assessments,
respectively. AR6 also provided the assessment of —1.3 [range —0.6 to —2.0 Wm™2] for the 1750—2014 period. We use the
1750-2019 time period below.

Furthermore, AR5 assessed ERF.;i and ERF,to be nearly equal in magnitude (see Fig. 8.15 of AR5 (Myhre et al., 2013a)).
A major difference between these two assessments of ERFagr is that, in ARG, it was stated that the cooling due to the aerosol

indirect effect (ERF.i) is much larger than the cooling due to the direct effect (ERF,). The change of ERFagr by ARG to a
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value that exhibits more cooling, for a time period that is 8 years more recent than the 2011 end year used by AR5 implies a
major shift in the shape of ERFagr as a function of time, because tropospheric aerosol loading is believed to have declined
over the past two decades due to successful air quality regulations implemented throughout the world (Smith and Bond, 2014;
Fuetal., 2021).

The methodology to develop the time evolution of RF due to aerosols in ARG is partially based on the modeling study of
Smith et al. (2021c). Similarly to GHGs, there is a direct relationship between ERFagr and the atmospheric abundance of
various types of aerosols, which is commonly expressed as a relation between the ERF and the emission of aerosols and aerosol
precursors. The parametrization used in AR6 assumes that ERF,;; scales linearly with the emissions of various types of aerosol
precursors (Smith et al., 2018a; Smith et al., 2021c), while the relation between ERF,; and emissions is logarithmic (Carslaw
et al., 2013; Ghan et al., 2013; Stevens, 2015; Smith et al., 2018a; Smith et al., 2021c). Smith et al. (2021¢) used aerosol ERF
from various CMIP6 models, which were decomposed to the direct and indirect components using the Approximate Partial
Radiative Perturbation (APRP) method (Taylor et al., 2007; Zelinka et al., 2014), from which coefficients for the linear and
logarithmic relations (for ERFi and ERF,, respectively) for each CMIP6 model were determined.

Next, Smith et al. (2021c) created a large ensemble of ERF ogr time series of various shapes and magnitudes by a Monte-
Carlo sampling around the sets of coefficients obtained from the CMIP6 model-based fits. This aerosol ensemble accounts for
the uncertainty in both the historical time evolution and the magnitude of ERFagr. This methodology is adapted by Chapter 7
of ARG for ERF,, as described in Sections 7.SM.1.3 and 7.SM.1.4 of AR6 (Smith et al., 2021a). The median of the ensemble
is adapted as the best estimate for the historical time series of ERF,, scaled to match a value of —1.0 Wm2 for 1750 to
2005-2014. For ERFa, ARG uses the same assumption of a linear connection between aerosol emissions and forcing (Smith
et al., 2018a; Smith et al., 2021¢), but unlike Smith et al. (2021c), also considers emissions of NH3. Additionally, the AR6
report does not use a Monte-Carlo ensemble to derive a best estimate time series for ERF,i (and corresponding coefficients).
Instead, AR6 determines coefficients such that the contributions from the individual aerosol precursor species match the values
derived from Myhre et al. (2013b), as described in Section 7.SM.1.3.2 of the AR6 report (Smith et al., 2021a). The AR6
methodology provides a single set of “best estimate” coefficients that can be used to convert emissions data to a time series of
ERF.i and ERF,, and consequently, ERF agr.

In our model framework, the radiative forcing of aerosols is treated in a probabilistic manner that expands upon the single
best estimate ERFagr time series that is associated with each SSP. Therefore, the comparison of single ERFagr time series
shown in Fig. 1g highlights only a portion of the difference between the Baseline and AR6 Frameworks.

There are two major takeaways from Fig. 1g. First, for SSP2—4.5 and SSP4-3.4, aerosol cooling is much stronger between
2020 and 2060 in the AR6 Framework compared to the Baseline, whereas for SSP1-1.9 and SSP1-2.6, aerosol cooling is
similar or weaker within the AR6 Framework than in the Baseline. In general, for all four SSP scenarios, the rate of decline in
aerosol cooling is more rapid within the AR6 Framework relative to the Baseline. Second, if we use the aerosol ensemble
member from our probabilistic treatment that corresponds to the best estimate of ERFagr in the Baseline Framework (—0.9

Wm 2 in 2011 from ARS) as well as the best estimate in the AR6 Framework (—1.1 Wm in 2019) to compute the overall

8



245

250

255

260

265

270

https://doi.org/10.5194/egusphere-2025-342
Preprint. Discussion started: 10 February 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

anthropogenic ERF for the respective Frameworks (Fig. 11), the total anthropogenic ERF between 1850 and 2019 is lower in
the AR6 framework compared to the Baseline, whereas the rise in total anthropogenic ERF between 1950 and 2019 is more
pronounced within the AR6 framework (black dotted and solid lines, Fig. 1i). This difference has important implications for
our estimates of the rate of warming due to human activity, which we discuss in Sect. 2.4.

Finally, we highlight how total anthropogenic ERF at the end of the century considerably exceeds, by as much as 0.7
Wm?2 for SSP2—4.5, the nameplate RF target for each of the four SSP scenarios (Fig. 1i). At the time the SSP scenarios were
constructed, the value of the nameplate RF at the end of the century was designed to be interpreted as SARF (Tebaldi et al.,
2021). The original purpose of the nameplate RF metric was to provide a numerical representation of a certain climate outcome
(O'Neill et al., 2016). As highlighted by Sect. 7.3.1 of AR6 (Forster et al., 2021), “ARS5 recommended ERF as a more useful
measure of the climate effects of a physical driver than [SARF] adopted in earlier assessments”. Additionally, as described
above, AR5 considered SARF to be equal to ERF, while this is no longer the case for AR6. Thus, in ARS-consistent settings,
the nameplate RF of a given SSP scenario could be interpreted as either SARF or ERF. Lastly, RF for tropospheric aerosols is
computed as ERF directly from emissions in AR6 (Smith et al., 2021a), which leads to additional differences with the end-of-
century design of the original SSPs. As such, we conclude that the end-of-century RF is larger than the nameplate target for

all four SSPs.

2.4 Empirical Model of Global Climate

To quantify the impacts of the updates to ERF datasets outlined above on AAWR, EffCS, and projected warming, we use the
Empirical Model of Global Climate (EM—GC) model (Canty et al., 2013; Mascioli et al., 2012; Hope et al., 2017; McBride et
al., 2021). EM—GC uses a multiple linear regression energy balance approach and computes the GMST anomaly (ATwmpL)

based on anthropogenic ERF and natural factors as shown in Eq. (1).

ATMDL,i = ]-/_{ﬂ(AERFGHG',: +s X AERFAER,i + AERFLUC,i - QOCEAN,i) + CO + Cl X SAODi_6 + C2 X TSIi_]_ + C3 X
14
ENSOi_2+C4_ XAMOCL'+C5XPD0,:+C6XIOD,: (1)

In Eq. (1), AERF,; represent the effective radiative forcing from greenhouse gases (GHG), tropospheric aerosols (AER) and
land use change (LUC) compared to a 1750 baseline. The model uses a monthly time grid, with i being the index of a specific
month. The dimensionless scaling parameter, s, is used to account for the uncertainty in the ERF due to aerosols as described
in Sect. 2.4.1.

The natural factors considered when modeling the GMST anomaly are Stratospheric Aerosol Optical Depth (SAOD) from
volcanic eruptions, Total Solar Irradiance (TSI), El-Nifio Southern Oscillation (ENSO), Atlantic Meridional Overturning
Circulation (AMOC), Pacific Decadal Oscillation (PDO) and Indian Ocean Dipole (IOD), as outlined in Sect. 2.5.5. Similarly
to previous analyses with EM—GC (McBride et al., 2021), SAOD, TSI and ENSO are lagged by 6,1 and 2 months, respectively.
Additionally, EM—GC quantitatively accounts for the export of heat to Earth’s oceans (Qocean;; in Eq. 1), as described below.
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The dimensionless parameter y in Eq. (1) is defined as the sensitivity of the global climate to feedbacks due to changes in

the anthropogenic ERF due GHGs, AER and LUC. v is related to the climate feedback parameter of EM—GC (Az) as shown in
Eq. (2):

14y = @)

T%)
Here, As is the sum of all climate feedbacks from factors such as water vapor, lapse rate, surface albedo and clouds. A, in Egs.
(1) and (2) corresponds to the response of a black body to a perturbation with no climate feedback present, with a value of 3.2
W m™2°C™' (Bony et al., 2006). The above mathematical representation is used in lieu of incorporating the Planck feedback
into As. For the EM—GC simulations shown below, we assume As to be constant over time, which was found to be a very good
approximation within EM—GC, as described by Sect. 3.3.6 of McBride et al. (2021).

Values of the regression coefficients Co—Cs in Eq. (1) are computed by minimizing the cost function shown in Eq. (3).

. N 1
Cost function = Zl.:’"{ONT”S—JéBS‘ (ATppsi — ATwpri)? (3)
i

Here, ATogs, and ATwpL,; represent the observed and EM—GC modeled GMST anomaly for a given month (i), respectively,
while oogs is the 16 uncertainty associated with each temperature observation.

EM-GC simulations quantitatively account for heat being absorbed by Earth’s oceans (ocean heat export, OHE).
Time—dependent OHE is computed as shown by Eq. (4), where the constant « is the ocean heat uptake efficiency (in W m™
°C™") as expressed by Eq. (S1). Further details of our model treatment of OHE is given in the Supplement as well as Sect. 2.1
of McBride et al. (2021).

Qocean, = K(ATATM,HUMAN,i - ATOCEAN,HUMAN,L') 4)

Time series of the natural and anthropogenic factors between 1850 and 2019 are used as inputs to compute the coefficients
(Co—Cs) in Eq. (1). We refer to this step as the training of the model. We define the historical training period as 1850—2019,
and the future SSP—based projection period as 2020—-2100, to be consistent with the definition of historical and SSP—based
timeframes outlined in Section 7.SM.1.3 (Smith et al., 2021a) and Annex III (IPCC, 2021b) of AR6. Each fit to the historical
GMST record (a set of coefficients) can be extrapolated to the future using Eq. (1), with effects of natural forcings zeroed out,
allowing EM—GC to provide a time-dependent GMST forecast for each set of regression coefficients. The model also uses
three y*> goodness-of-fit constraints, as summarized in Sect. 2.7.

Figure 2 shows the EM—GC best fit to the Hadley Centre Climatic Research Unit version 5 (HadCRUTS) (Morice et
al., 2021) historical GMST anomaly record for the Baseline and AR6 Frameworks, assuming the IPCC best estimate RF
trajectories for tropospheric aerosols shown on Fig. 1g. The top panels of Fig. 2 show the EM—GC modelled best fit (red) to
the HadCRUTS GMST record (black). Other panels represent the contribution to the modelled GMST from anthropogenic
activity (Fig. 2c,d), as well as the natural factors of SAOD, TSI, ENSO, AMOC, PDO and 10D included in Eq. (1) (Fig. 2e—1).

10
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The bottom panels of both columns of Fig. 2 show the modeled (red) and measured (black) Ocean Heat Content (OHC), as
well as the corresponding measurement uncertainty (blue). Description of the GMST and OHC datasets used to train the model
are provided in Sect. 2.5. EM—GC runs simulate the amount of heat exported to Earth’s oceans such that the change in modeled
OHC matches the change in observed OHC, over the period where observed OHC data are available. For panel (m) of Fig. 2,
the modeled OHC time series is initialized to zero in 1850, and the observed OHC (black line, which is an anomaly) is adjusted
to match the model mean over 1955 to 2019. For panel (n), the observed OHC is identical to that shown in panel (m), and the
modeled time series is again adjusted to match the observed mean over 1955 to 2019. This final adjustment leads to a non-
zero value for OHC in 1850 for the AR6 Framework run.

We provide the value of the Az and k from Egs. (1) and (4) on Fig. 2a,b and Fig. 2m,n, respectively. The ¥* goodness-of-
fit parameters (Sect. 2.7) for the modelled GMST anomaly (x*atm) and OHC y?ocean are also provided on the same panels.
The rate of increase in GMST between 1975 and 2014 due to human activity (AAWR, Sect. 2.6) is provided as the slope of a
linear fit to the anthropogenic contribution to the GMST anomaly in this period on Fig. 2¢,d. Similar values of AAWR are
found for modest (that is, shifts within a decade) changes in the start and end year used to compute AAWR, due to the linearity

of the anthropogenic contribution to GMST (orange lines in Fig. 2¢c—d).

11
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Figure 2: EM—GC assessed contribution of natural and anthropogenic factors to warming for the best fits to the HaddCRUT5 GMST
record within the Baseline (left) and ARG6 (right) Frameworks. Fits are shown for the IPCC best estimate of ERFagr (see text) for
each Framework. Both simulations use a training period of 1850 to 2019. (a,b) Observed (black) and modelled (red) GMST anomaly
(AT) relative to a pre-industrial (1850—1900) baseline. Values of A= and y*atm for the best-fit simulation are shown at the top. (c,d)
Contribution of anthropogenic activity to the GMST anomaly (orange). AAWR, computed as the slope of a linear fit (dashed black
line) as described in Section 2.6 is shown at the top. The 26 uncertainty for the slope of the linear fit is also provided (see text). (e—h):
Influence of TSI, SAOD and ENSO on the GMST anomaly. (i,j) Contribution of AMOC to the GMST anomaly. A linear fit between
1975 and 2014 is provided in a similar manner to the AAWR on panels (¢,d). (k,]): Influences of PDO and IOD on the GMST
anomaly. (m,n) Observed (black) and modelled (red) ocean heat content (OHC), with blue bars corresponding to the observational
uncertainty. Observed OHC shown in this figure is based on the average of five OHC datasets as described in Sect. 2.5.6. The y?ocEan
goodness-of-fit parameter, as well as the ocean heat uptake efficiency (k) are displayed at the top.
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For the AR6 Framework, an AAWR of 0.202 + 0.006 °C/decade is obtained from the best fit to the HadCRUTS5 GMST
record. A considerably smaller value for AAWR of 0.167 £+ 0.006 °C/decade is found for the Baseline framework. As noted
above, the rise in total anthropogenic ERF since about 1950 is more pronounced within the AR6 Framework compared to the

Baseline (Fig. 1i), due to differences in the best-estimate time series of ERFagr between the two frameworks (Fig. 1g). Since
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AAWR is based on the slope of the linear fit to the anthropogenic contribution to warming, a higher value of AAWR is found
for the AR6 framework. Here, both uncertainties for AAWR are based on the goodness of the linear fit for a single model run
and are noted only for completeness. A more realistic estimate of the true uncertainty in AAWR is found using the ensemble
runs of our EM-GC, as described in Section 3.1.

The value of 0.202 °C/decade found within the AR6 Framework for AAWR is consistent with the assessment of 0.19
%C/decade between 1980—2020 described in Table 2.4 of AR6 Chapter 2 (Gulev et al., 2021; Forster et al., 2023). Furthermore,
AAWR computed within the AR6 framework shows closer agreement — compared to the Baseline framework — with AAWR
derived from a CMIP6 multi-model ensemble, the median of which McBride et al. (2021) found to be 0.221 °C/decade, with
the 5%, 25%, 75% and 95" percentiles being 0.151, 0.192, 0.245 and 0.299 °C/decade, respectively. However, the median value
of AAWR for the CMIP6 ensemble, as well as AAWR obtained from numerous CMIP6 ensemble members, are higher than
our regression-based estimate of AAWR using EM—GC. This finding is consistent with several recent assessments finding that
some CMIP6 GCMs overestimate the extent of warming in response to GHG emissions (Tokarska et al., 2020b; McBride et
al., 2021; Hausfather et al., 2022).

Below, we provide a description of the probabilistic approach utilized by EM—GC to account for the uncertainty in

ERFagr. We quantify AAWR and EffCS for the whole range of uncertainty in ERFagr and climate feedback in Section 3.1.

2.4.1 Uncertainty in ERFagr within EM—GC

Uncertainty in the magnitude of ERFagr is accounted for by performing the above regression for a large ensemble of aerosol
scenarios. We scale a best estimate time series of aecrosol ERF (AERFagr in Eq. (1)) by a series of constant multiplicative
factors (s in Eq. (1), Fig. S1). The best estimate time series is derived from data from the Potsdam Institute for Climate Research
and Annex III of AR6 for the Baseline and AR6 frameworks, respectively; as outlined in Sections 2.5.3 and 2.5.4. We use
ERFagr in a given reference year (hereinafter ERFagr; where t denotes the reference year) as the identifier of each of the
aerosol ensemble members. The reference year was chosen as 2011 and 2019 for the Baseline and AR6 frameworks,
respectively, to be consistent with the years for which AR5 and AR6 provided a best estimate and likely range for ERFagr.

The regression described in Eqgs. 1-3 is performed with each member of the aerosol ensemble being combined with a
series of various values of the climate feedback parameter (Az). In total, 400 values of As are used together with 400 values of
the scaling factor s (hence ERFagry), to create a As — ERFagr, grid with 160,000 elements (hereinafter EM—GC grid). Each
element of the grid corresponds to a fit of the historical GMST record, and thus, a unique set of Co—Cs regression coefficients.
These sets of coefficients are then used to forecast the future GMST anomaly for each grid member, using ERF projections
for GHGs and aerosols from SSPs. These GMST projections are then filtered and weighed as described in Section 2.7 based
on both the goodness of the fit to the historical GMST record, as well as the magnitude of ERFagr compared to the best
estimate and likely range of ERFagr prescribed by AR5 and AR6. Lastly, we use the weighted projections to compute
probabilistic forecasts on the future rise of GMST.
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2.5 Model inputs
2.5.1 Temperature data

In this study, we use the Hadley Centre Climatic Research Unit version 5 (HadCRUTS) (Morice et al., 2021) GMST anomaly
records for the training of the EM—GC. Temperature anomalies are with respect to an 1850—1900 pre-industrial baseline.
Similarly to previous works using EM—GC (McBride et al., 2021), the uncertainty time series given with the HadCRUT4
temperature record are used for the EM—GC simulations in this paper. The input GMST anomaly is shown by the black line
in Fig. 2a-b.

2.5.2 Shared Socioeconomic Pathways

In this work, we provide EM—GC output for four different SSP scenarios, two from Tier 1 (SSP1-2.6, SSP2—4.5) and two
from Tier 2 (SSP1-1.9, SSP4-3.4) of the ScenarioMIP experiment (O'Neill et al., 2016). Three of these SSP scenarios
(SSP1-1.9, SSP1-2.6 and SSP2—4.5) are highlighted as significant scenarios both in Annex III of AR6 (IPCC, 2021b) and
Table 1 of Meinshausen et al. (2024). SSP4-3.4 is considered as a scenario which was closest to a 50% probability of limiting
warming below the PA upper limit of 2.0 °C in 2100, based on the previous work of McBride ef al. (2021) using the EM—GC
model. Higher forcing scenarios like SSP3—7.0 and SSP5—8.5 are not considered here, as our intention is to focus on the SSP
scenarios that are consistent with current or potential future climate policies. Scenarios like SSP3—7.0 and SSP5—8.5 fall into
the “The World We Avoided” category of Meinshausen et al. (2024), who considers this category to be of a lower priority (see
Table 1 of Meinshausen et al. (2024)).

2.5.3 Baseline Framework

The Baseline framework is constructed based on datasets available shortly before the AR6 report was published. Historical
concentrations of GHGs between 1850 and 2014 are from Meinshausen et al. (2017), while GHG concentrations between 2015
and 2100 — with the exception of ODSs — are from the SSP database (Riahi et al., 2017; Van Vuuren et al., 2017; Fricko et al.,
2017; Fujimori et al.,, 2017; Calvin et al., 2017, Kriegler et al., 2017; Rogelj et al., 2018) available at
https://tntcat.iiasa.ac.at/SspDb/ (last opened: January 8, 2024). Data in these sources are provided on a yearly and decadal grid,

respectively, which are interpolated to obtain a monthly time series of GHG concentrations between 1850 and 2100.
Concentrations of CO,, CH4 and N,O are converted to SARF using the formulae of Myhre et al. (1998). SARF attributable to
stratospheric water vapor is computed as 15% of SARFcn4 based on Myhre et al., (2007). Concentrations of ODSs beyond
2015 are from table 6-4 of the 2018 Ozone Assessment Report (Carpenter et al., 2018), and are converted to RF using radiative
efficiencies for these obtained from the WMO (2018). The SSP database does not provide SARF time series for tropospheric
03, hence our input of SARFo; is developed based on Meinshausen et al. (201 1¢) with the same methodology used by McBride
et al. (2021): SARFo3; between 1850 and 2005 are obtained from Meinshausen et al. (2011c) through the Potsdam Institute of
Climate Research (PICR) website (https:/www.pik-potsdam.de/~mmalte/rcps/, last opened: May 21, 2024), while from 2006
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onwards, for each SSP scenario, we use SARFo3 from a corresponding RCP pathway in Meinshausen et al. (2011c). SARFo3
from RCP2.6 and RCP4.5 are used for SSP1-2.6 and SSP2—-4.5, respectively. We use SARFo3; from RCP2.6 for SSP1-1.9,
while for SSP4-3.4, a new time series was created, using the linear combination of the RCP2.6 and RCP8.5 time series,
weighed by the total GHG SARF in 2100. We note that RCP2.6 is sometimes referred to as RCP3—PD (Meinshausen et al.,
2011c), including on the PICR website. Consistent with the pre—AR6 formulations, within the Baseline framework, we
consider ERF to be equal to SARF for all GHGs (Myhre et al., 2013a; Forster et al., 2021). Finally, ERF due to land-use
change between 1850 and 2011 is obtained from Table AIl.1.2 of Annex II of the AR5 (IPCC, 2013a), which is interpolated
onto a monthly time grid. Between 2012 and 2100, we used the 2011 value for ERFryc.

The initial time series for the RF due to tropospheric aerosols is developed in a manner that is similar to that described by
McBride et al. (2021). Between 1850 and 2005, we sum RF from six different aerosol types (sulfate, mineral dust, ammonium-
nitrate, fossil fuel black carbon and biomass burning organic and black carbon) to obtain a time series of the total aerosol direct
effect. RF data for each of these aerosol types are from the PICR (Meinshausen et al., 2011c) for RCP4.5, except for sulfate,
where we use the estimate of Smith ez al. (2011). The PICR datasets for aerosol direct effects are nearly identical until 2005,
so the specific choice of RCP4.5 between 1850 and 2004 carries no significance. Time series for aerosol indirect effects
between 1850 and 2005 are developed by scaling the time series of the direct effect using methodology described in Section
3.2.2 of Canty et al. (2013), as well as Hope et al. (2017). The time series for direct and indirect effects are added to obtain the
time series of total RF due to tropospheric aerosols between 1850 and 2005. From 2005 onwards, values of total acrosol RF
published in the SSP database are used. In order to obtain a continuous time series, values of total acrosol RF between 1850
and 2005 are scaled such that the value in 2005 matches the total acrosol RF value in 2005 obtained from the SSP database.
The time series of RF due to aerosols described above are treated as ERF for the Baseline Framework. The initial ERFagr time

series is then scaled to obtain an ensemble of aerosol forcing scenarios, as described in Sect. 2.4.1.

2.5.4 AR6 Framework

EM-GC input data for the AR6 Framework are based on the datasets published in Annex III of AR6 (IPCC, 2021b), and the
corresponding data repository (https://doi.org/10.5281/zenodo0.5705391, last opening: 9" January, 2024) (Smith et al., 2021b).

Yearly concentrations for CO,, CHs and N>O are obtained from this repository, which are based on the time series by
Meinshausen et al. (2017) and Meinshausen et al. (2020) for the 1850—2014 and 2019—-2100 periods, respectively, with a linear
transition between the two datasets between 2015 and 2020, as described by Sections 7.SM1.3 and 7.SM.1.4 of AR6 (Smith
et al., 2021a). Similarly to AR6, the atmospheric concentrations are converted to SARF with the formulae of Meinshausen et
al. (2020), using pre-industrial concentrations of 278.3 ppm, 270.1 ppb and 729 ppb for CO, N,O and CH,4 respectively. These
values are ice-core based best assessments of pre-industrial concentrations for these GHGs as described in Chapter 2 of AR6
(Gulev et al., 2021). Tropospheric adjustments of +5%, +7% and —14% are used (Smith et al., 2018b; Hodnebrog et al., 2020)
to convert SARF to ERF for CO», N>O and CHy, respectively, which are based on Section 7.3.2 and 7.SM.1.3.1 of AR6 (Forster
et al., 2021; Smith et al., 2021a). ERF from stratospheric water vapor is computed as 9.19% of methane ERF; our use of this
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scaling value was found to have the highest agreement with the values provided in Annex III of AR6. ERF time series for
halogenated compounds and tropospheric ozone are directly adapted from the AR6 Annex III datasets. This dataset provides
total ERF from both stratospheric and tropospheric O3, which is dominated by the contribution from tropospheric O3 (see note
below Table AIIL.3 in Annex III of AR6). All of the above input time series are interpolated onto a monthly time grid, and
then summed to provide the AERFgng time series in Eq. (1) for the AR6 Framework.

The ERF time series for land-use change is adapted directly from the AR6 Annex III dataset and interpolated onto a
monthly time grid to obtain AERFLyc to be used in Eq. (1). Finally, the initial ERF time series for tropospheric aerosols is also
created using the AR6 Annex III datasets by summing ERF,; (direct effect) and ERF,; (indirect effect) for the entire timeframe
for each SSP scenario. The sum is then scaled to create an ensemble for ERFagr, as described in Section 2.4.1. The resulting

time series are then interpolated to obtain monthly time series for ERF sgr.

2.5.5 Natural factors

EM-GC simulations consider a variety of natural factors alongside the anthropogenic component of warming, as shown in Eq.
(1). The input time series for TSI anomalies used in Eq. (1) is constructed from CMIP6 model data between 1850 and 2014
(Matthes et al., 2017), while values for 20152019 are obtained from the Solar Radiation and Climate Experiment (SORCE)
(Dudok De Wit et al., 2017). The SAOD input time series from 1850 to 1978 is based on extinction coefficients at 550 nm
from 80 °S to 80 °N obtained from the Volcanic Forcing Dataset (Arfeuille et al., 2014) that was prepared for CMIP6 GCM
runs. For 1979 to 2018, we use a time series of SAOD at 550 nm from the Global Space-based Stratospheric Aerosol
Climatology (GloSSAC v2.0) (Thomason et al., 2018). For the earlier time period (1850 to 1978), the extinction coefficients
from the Volcanic Forcing Dataset were integrated from the tropopause to 39.5 km, to obtain a globally averaged SAOD,
weighted by the cosine of latitude from 80 °S to 80 °N. For the latter time period (1979 to 2018), we calculate globally averaged
SAOD from the GloSSAC dataset using cosine-latitude weighting over the same range of latitudes. For the year 2019, level 3
gridded SAOD product from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) (Vaughan et
al., 2004) is used to obtain a global average SAOD, which is then offset by the average difference between the GloSSAC and
CALIPSO datasets for the period of overlap (2006—2018) between the two datasets, as described in Section 2.2.5 of McBride
et al. (2021). The contribution of TSI and SAOD to the GMST anomaly for the best-fit runs of the Baseline and AR6
frameworks are shown in Fig. 2e-f. Values of TSI beyond 2019, which marks the end of the training period, are set to zero,
while for SAOD, we use the value from December 2019 for the 2020 to 2100 period.

The ENSO time series used during the training period (1850—2019) is based on Version 2 of the Multivariate ENSO Index
(MELv2) (Wolter and Timlin, 1993; Zhang et al., 2019). The MEI.v2 dataset provides data starting in 1979. For 1850 to 1978,
a historical extension based on Wolter and Timlin (2011) and the HadSST3 dataset (Kennedy et al., 2011) is used, as detailed
in Section 2.2.6 of McBride ef al. (2021). Input values for ENSO are also set to zero beyond 2019. The contribution of ENSO
to the GMST anomaly for the best-fit runs are shown in Fig. 2g-h.
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PDO input data are obtained from the University of Washington PDO index for 1900—-2018, with values of zero used
outside this time period. IOD input for 1850—2019 was created from the 1° x 1° Sea Surface Temperatures (SSTs) from the
Centennial in situ Observation-Based Estimate (COBE) (Ishii et al., 2005), with values of zero assigned beyond 2019. PDO
and IOD were found to have little effect on GMST in EM—GC simulations (McBride et al., 2021), but for completeness, we
include these factors. The input AMOC time series is based on SST data from HadSST4 (Kennedy et al., 2019) between the
Equator and 60 °N in the Atlantic Ocean, detrended using the magnitude of anthropogenic radiative forcing, then Fourier-
filtered to remove frequencies above 1/9 yr™! following Sect. 3.2.3 and 4.1.2 of Canty et al. (2013) and Sect. 2.2.7 of McBride
et al. (2021). Further detail regarding model inputs for ENSO, AMOC, IOD, PDO and SAOD is given in Sections 2.2.5-2.2.7
of McBride et al. (2021). The computed contribution of variations in the strength of AMOC to the GMST anomaly for the

best-fit runs is shown in Fig. 2i-j.

2.5.6 Ocean heat content

For both Frameworks in this paper, the average of five ocean heat content datasets (Levitus et al., 2012; Balmaseda et al.,
2013; Cheng et al., 2017; Ishii et al., 2017; Carton et al., 2018) is used. The uncertainty for the average OHC record in each
month is obtained by computing the 1o standard deviation between the five datasets for a given month, or by using the
uncertainty from Cheng et al. (2017) for that month, whichever is greater. The uncertainties from Cheng et al. (2017) were
chosen for this purpose as these are the largest uncertainties of the five datasets. EM—GC simulations normalize modelled
OHC (Fig. 2m-n, red line) to 0 in 1850, which is shown along the average observed OHC time series (black line) and the
uncertainty series described above (blue markers) on Fig. 2m-n for the upper 700m of the ocean. EM—GC simulations assume
that the upper 700m of the ocean holds 70% of the total OHC (McBride et al., 2021). Section 2.2.8 and Fig. S9 of McBride et

al. (2021) provide additional detail on the average OHC dataset and the corresponding uncertainty time series.

2.6 Attributable anthropogenic warming rate and effective climate sensitivity

We define Attributable Anthropogenic Warming Rate (AAWR) as the rate of change in GMST due to anthropogenic activity
between 1975 and 2014. The period 1975-2014, chosen in accordance with previous work using our model, spans a 40-year
period in which GMST rose in a near-linear fashion due to human activity (McBride et al., 2021). AAWR is determined as the
slope of a linear fit to the anthropogenic component (ATwmpr anth) Of global warming, defined below in Eq. (5), between 1975
and 2014. The time series of ATwmpranth for the best fts of the Baseline and AR6 Framework simulations are shown by the

orange lines in Fig. 2¢c-d.
AT, =Y (ARF, ARF, ARF, i — 5
MDLanthi = 7 (ARFge, + 4ERi T LUC,E QOCEAN,L') ®)

Equilibrium Climate Sensitivity (ECS) is defined as the warming after climate equilibrated to a theoretical doubling of the pre-

industrial concentration CO, (IPCC, 2001, 2021c; Forster et al., 2021). Since equilibrium can take centuries to reach due to
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the slow heat transfer to deep oceans (Hansen et al., 2011; Church et al., 2013; Tokarska et al., 2020a), often the more short-
term Effective Climate Sensitivity (EffCS) (Gregory et al., 2020; Tokarska et al., 2020a; Spencer and Christy, 2023) is used.
EM—GC output is used to provide an estimate of EffCS which is based upon the regression to the historical GMST record. We
infer EffCS from the ERF due to the doubling of the pre-industrial CO, concentration (AERF2«co2) as shown in Eq. (6), which
is consistent with the methodology described in Box 7.1 of AR6 (Forster et al., 2021).

EffCS = —— X AERF,co; (6)
Ap—7Az

This method of computing EffCS depends on the formulation of ERF. Within the Baseline Framework, we use the RF formula
of Myhre et al. (1998), which leads to AERF,y 0, = 5.35 X In(2) = 3.71 Wm™2. For the AR6 Framework, we use a
AERF o2 value of 3.93 Wm™ based on Section 7.3.2.1 and 7.SM.1.2 of ARG6 (Forster et al., 2021; Smith et al., 2021a). Thus,
EffCS computed using the AR6 ERFco, formula is 6% larger relative to EffCS calculated with the Myhre et al. (1998) formula
for a given value of As. Finally, we note that climate sensitivity deduced from historical warming may be different from true
ECS, as the historical climate feedback could differ from the climate feedback under an abrupt 4xCO, forcing scenario that is

often used to evaluate ECS in ESMs (Andrews et al., 2018; Andrews et al., 2019; Winton et al., 2020; Forster et al., 2021).

2.7 Observational constraining and ensemble weighting

The 160,000 member As—ERF sgr grid described in Sect. 2.4.1 is constrained by observational data of the GMST anomaly and
OHC, using three y? based metrics (McBride et al., 2021) given by Eqns. S2—S4. Two of these y?> metrics quantify how well
the modelled GMST anomaly represents the observed temperature anomaly of the atmosphere for the entire training period
(1850 — 2019, y*atm) and the GMST anomaly of the last 80 years (1940 — 2019, y*rrcent). The third y? metric (¥*ocean) is a
goodness-of-fit value between the observed and modeled ocean heat content. Numerical values of x*atm and ¥?ocean for the
best fit run of the Baseline and AR6 Frameworks are given in Fig. 2a-b and 2m-n, respectively. The y’rpcent metric is used
because without this constraint, some solutions with values of x*atwm less than or equal to 2 have a visually poor simulation of
the rise in GMST over the past 4 to 5 decades (McBride et al., 2021). Only members of the Az — ERFagr,; grid that yield a good
fit to the historical GMST and OHC data are accepted; that is, grid members for which all three ¥> metrics yield values less
than or equal to 2.

For the results shown in Section 3, the accepted grid members that are considered to be good fits to the observational data
are then weighted by the assessed likelihood that their specific value of ERFagr in the reference year 2011 (for the Baseline
Framework) or 2019 (for the AR6 Framework) is “true”. To derive these weightings, we use an asymmetrical Gaussian
function that is centered around the IPCC best estimate of the ERF of aerosols in the reference year (—0.9 Wm 2 in 2011 within
the Baseline Framework, and —1.1 Wm™?2 in 2019 for the AR6 Framework). These weighting functions are shown in Fig. 3a-
b. The 26 boundaries of the Gaussians are based on the boundaries of the likely range of ERFgr in the same year provided by
the corresponding IPCC reports (see Table S3). The Gaussians are asymmetrical, as the likely range of ERFgr specified in
both the AR5 and ARG reports is not symmetrical around the respective best estimate. The weighted grid is then used to provide
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probabilistic estimates of AAWR and EffCS (Sect. 3.1), as well as probabilistic forecasts on the GMST anomaly (Sect. 3.2),
which serve as the primary output of EM—GC.

3 Results
3.1 Ensemble—based assessment of AAWR and climate sensitivity

In Sect. 2.4, we briefly analyzed the AAWR obtained from EM—GC best fits to the GMST record, assuming the ARS and AR6
prescribed radiative forcing for aerosols, for the Baseline and AR6 Frameworks, respectively. We found a significant increase
in the value of AAWR from 0.167 °C/decade within the Baseline Framework, to 0.202 °C/decade for the AR6 Framework. In
this section, we evaluate AAWR and EffCS for the entire 160,000 member EM—GC grid, which accounts for the uncertainty
in the magnitude of climate feedback and ERF of aerosols (Sect. 2.4.1).

Figure 3 shows AAWR (Fig. 3c—d) and EffCS (Fig. 3e—f) for the EM—GC A5z — ERFagr; grid, within the Baseline (left)
and AR6 Frameworks (right). Colors denote the values of AAWR and EffCS found for simulations that satisfy all three
metrics, as described in Sect. 2.7. Fig 3a—b shows the Gaussians used to convert the As — ERFagr; grid output into a
probabilistic quantification of AAWR and EffCS, which are presented in the form of Probability Distribution Functions (PDFs)
in Fig. 4. The height of bars on Fig. 4 corresponds to the probability of AAWR (Fig. 4a) and EffCS (Fig. 4b) — obtained from
the Gaussian-weighting of the EM—GC grid — being in the range defined by the width of each column. We use a bin size of
0.005 °C decade ™" and 0.1 °C in Fig. 4 for AAWR and EffCS, respectively. Figure 4 also shows the EM—GC median for AAWR
and EffCS, which we define as the values of AAWR and EffCS corresponding to 50% probability, alongside the 5™ to 95t
percentile range for AAWR and EffCS.
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Figure 3: Aerosol weighting method and EM—GC computed values of AAWR and EffCS for combinations of ERFagr and Az. (Left):
Simulations using the Baseline Framework. (Right): Simulations using the AR6 Framework. (a—b) Asymmetrical Gaussians used to
weight aerosol scenarios for probabilistic forecasts, as described in Sect. 2.7. Points marked on the Gaussians represent specific ERF
values used as the central values, as well as 16 and 26 boundaries of each Gaussian (Table S3). The Gaussians are overlaid for visual
comparison. The Gaussians shown with the solid black line are used to weight the EM—GC output in each column. (¢c—d) EM-GC
computed values of AAWR for the Az — ERFagr, grid. Colors denote the specific values of AAWR as indicated by the color bar on
the right, and are only shown for the combinations of ERFagr and Az for which a good fit to the HadCRUTS historical climate record
was found. (e-f) EM—GC computed values of EffCS for the Ax — ERFagr grid.

Within the Baseline Framework (Fig. 3c), the historical GMST record can be fit with combinations of high As and strong
aerosol cooling. For example, good fits to the historical GMST record were found with aerosol cooling as negative as —1.6
Wm2in 2011, which corresponds to much stronger aerosol cooling than the AR5 best estimate of —0.9 Wm ™2 within the same
year. Conversely, within the AR6 Framework, the strongest aerosol cooling for which a good fit was found (about —1.2 Wm™
in 2019) is very close to the AR6 best estimate of —1.1 Wm 2 in 2019. Thus, within the AR6 Framework, it is not possible to
fit the historical GMST record with aerosol cooling much stronger than the corresponding IPCC best-estimate. Within the AR6
Framework, the ERFagr 2019 range for which a good fit to the historical GMST record was found is 0.0 to —1.2 Wm 2, which
is broadly consistent with the ARG6 likely range for ERFagr 2019 of —0.4 to —1.7 Wm™?2 (Forster et al., 2021). While good fits to
the historical GMST record were found with weak aerosol cooling of 0 to —0.4 Wm 2, these simulations are given very low

weights (Fig. 3b) because the value of ERFagr lies outside of the AR6—assessed likely range. These weak aerosol cooling
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simulations are also associated with values of climate feedback (As) that fall outside the “likely” range of total feedback derived
from Table 7.10 of AR6 (see Supplement for details). Finally, even though EM—GC simulations can obtain good fits to the
HadCRUTS record with ERFagr being greater than 0 Wm™2 and with As being negative, these simulations are discarded (and
not shown in Fig. 3) because Section 7.3.3.4 of ARG states that it is “virtually certain” that total aerosol ERF is negative. The
ERF sgr cutoff in Fig. 3¢c—f is thus set at 0 Wm™.

The range of AAWR found using the entire EM—GC grid is near identical between the Baseline and AR6 Frameworks at
0.11 to 0.21 °C decade™! and 0.11 to 0.22 °C decade ™!, respectively (Fig 3c—d). However, the median AAWR increases from
0.16 to 0.18 °C decade™! from the Baseline to the AR6 Framework (Fig. 4a). Similarly to the range of AAWR derived from
the entire Ax — ERFagr; grid, the 5™ to 95" percentile ranges are found to be consistent between the Baseline and AR6
Frameworks, at 0.12 to 0.20 °C decade™ and 0.13 to 0.21 °C decade ™', respectively. As described above, AAWR found for the
best fit to the GMST record using the IPCC prescribed best estimate for the RF of aerosols is 0.167 °C decade™ and 0.202 °C
decade! for the Baseline and AR6 Frameworks, respectively (Fig. 2c—d). For the Baseline Framework, the best—fit AAWR
0f 0.167 °C decade ™! found using the IPCC best estimate aerosol cooling is close to the EM—GC median of 0.16 °C decade ™.
Conversely, for the AR6 Framework, the median AAWR of 0.18 °C decade™! is about 10% smaller than the AAWR of 0.202
°C decade™! shown in Fig. 2d. This difference is caused by the fact that the IPCC ARG6 best estimate of —1.1 W m™? for
ERFagr 2019 is very close to the upper end of the range of ERFgr for which a good fit was found (Fig. 3d), whereas for the
Baseline Framework, the AR5 best estimate for aerosol cooling of 0.9 W m™? is approximately in the middle of the range of

ERFagr for which good fits to the historical GMST record are found.
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Figure 4: (a) Probability Distribution Functions (PDFs) for AAWR obtained from EM—GC simulations trained with the HadCRUTS
temperature dataset. AAWR from the Baseline Framework is shown in blue, while AAWR from the AR6 Framework is shown in
red. The EM—GC median (defined as the 50 percentile probability), and 5% to 95" percentile range is displayed at the top. (b) PDFs
of EffCS within the Baseline (blue) and AR6 Framework (red), with the corresponding median and range.

The EM—GC computed median and 5-95% range of AAWR are 0.18 [0.13 to 0.21 °C decade '] between 1974 and 2014
for the AR6 Framework. This range and median are consistent with several other studies, such as Samset et al. (2023), who
found a rate of increase in warming to be 0.19 + 0.01 °C decade™! between 1973 and 2022 for the HadCRUTS5 GMST record.
Samset et al. (2023) also found rates for other temperature records such as GISTEMP v4, NOAA v5.1 and Berkeley Earth to
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be 0.19, 0.18 and 0.17 °C decade ™, respectively. Our HadCRUTS5—based median of 0.18 °C decade™! is consistent with the
analysis of Samset et al. (2023) who employed a variety of historical temperature records, as well as the assessment of 0.19 °C
decade™! between 1980—2020 described in Table 2.4 of AR6 Chapter 2 (Gulev et al., 2021; Forster et al., 2023). As highlighted
by Samset et al. (2023) however, warming has accelerated since 1990 at a rate of 0.008 to 0.025 °C decade™ per decade
depending on the temperature record studied, with Forster et al. (2023) finding a rate of 0.2 °C decade™" for human—induced
warming for the 2013—2022 period, while Ribes et al. (2021) found this rate to be 0.23 °C decade™ for the 2010—19 period.

Our median and range of AAWR of 0.18 [0.13 to 0.21 °C decade!] within the AR6 Framework is considerably lower
than the median and 5-95% range of 0.221 [0.151 to 0.299 °C decade™'] derived from a CMIP6 multi-model ensemble by
McBride et al. (2021). The CMIP6 median obtained by McBride et al. (2021) is greater than the upper limit of the range found
in our study. Samset et al. (2023) also found that “virtually all CMIP6 simulations have higher 50—year warming rates than
the observations”, using an ensemble of 119 ESM simulations from CMIP6. In particular, Samset et al. (2023) found that
models with ECS being greater than 3.0 °C tend to quantify the rate of warming to be above 0.2 °C decade™' up to about 0.43
°C decade™! for certain models with ECS around 5 °C (Fig. 2d of Samset et al. (2023)). Armour et al. (2024) showed that
CMIP5/6 models that tended to over-estimate the observed warming trend over the 1981 to 2014 time period tended to have
larger values of EffCS, which they attribute to gross differences in the observed versus modeled warming patterns, particularly
in the tropical Pacific Ocean. Overall, AAWR found using our AR6 Framework is consistent with other lines of empirical
evidence in the recent literature, and tends to be quite a bit lower than the CMIP6 multi-model mean.

EffCS found using the three ¥ based metrics has a range of 1.20 to 3.23 °C in the AR6 Framework relative to a range of
1.19 to 5.20 °C for the Baseline Framework (Fig. 3e—f). The lower limit is found to be near identical between the two
Frameworks; however, the upper limit of EffCS is substantially smaller within the AR6 Framework. This difference originates
from the fact that the HadCRUTS GMST record can be fit with combinations of high climate feedback and strong aerosol
cooling only for the Baseline Framework, as described above. Fits with very strong aerosol cooling correspond to high As and
yield high values of EffCS (Eq. (6)) in the Baseline framework, resulting in a high upper bound for the range of EffCS.

The median EffCS is also found to be near identical between the Baseline and AR6 Frameworks at 2.26 and 2.29 °C,
respectively, with corresponding 5-95% ranges being [1.45 to 4.37 °C] and [1.54 to 3.11 °C] (Fig. 4b). The 95" percentile
value of EffCS is considerably smaller within the AR6 Framework relative to the Baseline, due to the aforementioned
phenomenon of not being able to obtain good fits to the GMST anomaly in the AR6 Framework for aerosol scenarios with
ERFagr 2019 being more negative than about —1.2 W m™2, Given that in the AR6 Framework the Gaussian used to weight the
As — ERFagr; grid is centered around the IPCC best estimate of —1.1 W m™2, the few combinations of As — ERFaggr 2019 that
yield good fits for which ERFagr 2019 is between —1.1 and —1.2 W m™? are still assigned high weights. Within the Baseline
Framework, good fits with strong aerosol cooling scenarios (as negative as —1.6 W m2 in 2011) are far from the AR5 best
estimate of —0.9 W m 2 cooling and are therefore assigned small weights (Fig. 3a). The high cooling scenarios correspond to

the low probability tail of the PDF with EffCS greater than about 3.5 °C shown in Fig. 4b for the Baseline Framework. The
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range of EffCS found for the AR6 Framework is considerably narrower than for the Baseline, which is well represented by the
difference in the 95" percentiles for EffCS for the two frameworks of 3.11 °C and 4.37 °C, respectively (Fig. 4b).

A recent study by Skeie ef al. (2024b) found the best estimate and 90% uncertainty range for EffCS to be 2.2 [1.6 to 3.0
9C] using a Bayesian estimation model and ERF datasets from AR6. Our estimate of 2.29 [1.54 to 3.11 °C] within the AR6
Framework exhibits close agreement with this study. Furthermore, Skeie ez al. (2024b) assume climate feedback to be constant
over the historical period, similar to our work. However, climate feedbacks may not be constant over time, partly due to their
dependence on the spatial pattern of warming, often termed “pattern effect” (Andrews et al., 2015; Armour, 2017; Stevens et
al., 2016; Skeie et al., 2024b). Since climate sensitivity is derived from the magnitude of climate feedback (i.e. (Forster et al.,
2021)), the magnitude of the pattern effect governs how much climate sensitivity inferred from historical records (EffCS)
differs from ECS. The sensitivity of GMST projections found using our model to time-dependent feedback is quantified in
Section 3.3.6 of McBride ef al. (2021).

Next, we quantify the effect of time-dependent feedback on ECS. Similar to Skeie ef al. (2024b), we apply the AR6
formulation for the impact of the pattern effect on the ensemble output of the AR6 Framework. The impact of time-dependent
feedback on ECS is quantified as in Eq. (7), where o’ represents the difference between climate feedback inferred from

historical warming and the climate feedback corresponding to that found for an abrupt doubling of the concentration of CO».

1
Ap—Ag—ar

ECS = X AERF,c0; (7

The formulation shown in Eq. (7) is equivalent with the methodology for the computation of ECS with the inclusion of o’
described in Section 7.5.2 of AR6 (Forster et al., 2021). The coefficient o’ is assessed by Section 7.4.4.3 of AR6 to have a
value of 0.5+0.5 W m 2 K!, at a low confidence level. Figure 5 shows ECS for values of o’ within the AR6 assessed range of
0to1 Wm?2K, in increments of 0.1 W m2 K™! (black circles, median), where the error bars represent the 5" and 95%
probabilistic range of ECS. The dashed horizontal line and shaded area correspond to the central value and very likely range

of ECS from Table 7.13 of AR6 (Forster et al., 2021).
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Figure 5: Equilibrium Climate Sensitivity (ECS) as the function of the pattern effect (o, see text). Black vertical bars and circles
correspond to the EM—GC 5-95% range, and 50% probability, respectively. The green shaded area and horizontal dashed line
represent the AR6 very likely range, and central estimate of ECS respectively, from Table 7.13 of Forster et al. (2021). All results
shown in this figure are based on inputs from the AR6 ERF Framework.

For &> =0 W m2 K™! (corresponding to no pattern effect), EffCS is equal to ECS and we obtain a median and range for
ECS 0f 2.29 [1.54 to 3.11 °C]. Using the AR6 best estimate of o’ = 0.5 W m 2 K™!, we find ECS to be 3.24 [1.92 to 5.15 °C],
while the AR6 upper limit of &’ = 1.0 W m™2 K™! yields a median and 5-95% range of 5.39 [2.52 to 13.54 °C]. Our estimate
of ECS agrees extremely well with the AR6 central estimate and likely range of ECS, for the AR6 best-estimate of o’, which
equals 0.5 W m™2 K™!. This conclusion is consistent with Skeie et al. (2024b), who also found their estimate of climate
sensitivity to be “almost identical” to the AR6 central value and very likely range of 3.0 [2.0 °C to 5.0 °C], upon using the AR6
best estimate of a’. Our range of ECS of [1.92 to 5.15°C] at o’ = 0.5 W m 2 K'! is also consistent with the recent assessment
of Cooper et al. (2024), who found ECS to be between 1.4 °C to 5.0 °C based on analysis of data acquired during the Last
Glacial Maximum (LGM). Our median estimate of 3.24 °C for &’ = 0.5 W m 2 K! is, however, higher than the LGM—based
best estimate of 2.4 °C. However, when combining the LGM—based assessment with other lines of evidence, Cooper et al.
(2024) finds ECS to be 2.9 °C [2.1 to 4.1 °C], which agrees well with our estimate.

Additionally, Fig. 5 shows that the 5" percentile of ECS varies between about 1.5 to 2.5 °C, depending on the magnitude

of o’, consistent with the AR6 assessment of ECS being greater than 1.5 °C at a virtually certain level of confidence (Forster
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et al., 2021). The 50" percentile estimates for ECS also all fall into the range of ECS assessed by AR6. Conversely, our 95
percentile estimates for ECS vary greatly with o’, and carry a substantially larger level of uncertainty than the 5" and 50%
percentile estimates. These findings are consistent with Chapter 7 of AR6, which stated “warming over the instrumental record
provides robust constraints on the lower end of the ECS range (high confidence), but owing to the possibility of future feedback
changes it does not, on its own, constrain the upper end of the range, in contrast to what was reported in ARS.”

We now discuss how the rate of warming in recent decades relates to EffCS/ECS and the spatial pattern of global warming.
Armour et al. (2024) found the central estimate and 5—95% range for the rate of warming between 1981 and 2014 to be 0.18
[0.15 to 0.21 °C decade '], which corresponds to ECS of 2.7 [1.5 to 3.9 °C] and EffCS of 2.3 [1.9 to 2.7 °C]. The rate of
warming obtained by Armour et al. (2024) is in close agreement with our AAWR estimate of 0.18 [0.13 to 0.21 °C decade™']
between 1974 and 2014. Furthermore, our EffCS estimate of 2.29 [1.54 to 3.11 °C] closely matches that of Armour et al.
(2024), albeit with a wider 5-95% range. Finally, our ECS estimate was found to be 3.24 [1.92 to 5.15 °C] for @’ = 0.5 W m
K™!, which is broadly consistent with Armour et al. (2024) value. Samset et al. (2023) found that CMIP6 models with ECS
greater than about 3.0 °C tend to provide an overly high estimate of the trend of observed warming in recent decades. Armour
et al. (2024) suggest the overly high estimates of recent warming trends are related to CMIP5/6 historical simulations failing
to reproduce observed SST patterns, particularly a cooling of the eastern tropical Pacific and a warming of the western Pacific.
Weaver et al. (2024) reached the same conclusion based on analysis of top of the atmosphere albedo of clouds and aerosols
from 340 nm radiances observed by NASA and NOAA satellite instruments. Armour et al. (2024) found that CMIP5/6 models
with high ECS can nonetheless provide estimates of warming trends consistent with observations, after correcting for the biases
in SST trend patterns. Weaver et al. (2024) showed that a significant number of CMIP6 models are unable to simulate the
observed latitudinal pattern of cloud albedo trends over the Pacific Ocean, again tied to the observed cooling trend in the
eastern tropical Pacific.

Our multiple linear regression — energy balance RCM, despite not considering the spatial pattern of warming, is able to
reproduce estimates of EffCS and ECS consistent with the Armour et al. (2024) study, who explicitly consider the spatial
pattern of global warming. We find that the range of observed warming in recent decades is consistent with the AR6 estimate
of ECS and that the CMIP5/6 models that estimate a more rapid rate of warming may indeed fall into the “hot model” category
(Tokarska et al., 2020b; McBride et al., 2021; Hausfather et al., 2022), potentially due to an overestimation of historical EffCS
(Armour et al., 2024).

3.2 Probabilistic forecast on future warming

Here we quantify the magnitude of future warming based on projections of ERF for four SSP scenarios. Here, we show
projections of GMST for only constant feedback because the GMST anomaly can be fit quite well for a wide-range of time
invariant feedback, albeit spanning a large range of values, particularly for the Baseline Framework (Fig. 3c-d). We compare
forecasts of GMST using the AR6 Framework with forecasts found using the Baseline Framework for the same SSPs, where

“Baseline” refers to the state-of-knowledge prior to the release of AR6. Similarly to our analysis of AAWR and EffCS in
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Section 3.1, forecasts of the GMST anomaly for the As—ERFagr, grid, weighted by an asymmetrical Gaussian function (Fig.
3a-b) that describes the AR5-based (Baseline) or AR6-based assessments of the likelihood of how much global warming by
GHGs has been offset by tropospheric aerosols, is central to these probabilistic forecasts.

Figure 6 shows computed values of the GMST anomaly in the year 2100 (AT2100) for the AR6 Framework, for four SSPs.
The colors correspond to values of ATzi00 for model runs that provide a good fit to the observed GMST anomaly over the

18502019 training period, as defined by all three %> metrics described in Section 2.7 yielding values less than or equal to 2.

1.2
ATy00 = 0.74 f0 1.82 °C

ATg00 = 0.94 10 2.23 °C

PR T T T TR S A S BT
LIS L S N L B B B I |

T T T | T T T T | T T I T T T T ] T T T | T T T T | T T T I T T T T ] 3‘4
2.5 - —
SSP1-1.9 ARG (@) = SSP1-2.6 ARG (b) IW s,
—~ 2.0 — — .
O 3 qF - 26 9
S 1.5 = = g
b = 4 24 8
€ 1.0 - - C
= = -
. 0.5 = El RE
~< = -

0.8

!
T

3.4

SSP4-3.4 ARG (c) SSP2-4.5 AR6 (d)

JE = 3.0
~ 2.0 - - = — =
o JE e 30 26 D
- 1.5 - = - ~
' 3 F 3 21 8
E 1.0 - = — iy
= 1 E = 1.7 <
5 0.5 4 B = .
< = =

- - 1.2

0.0 ATp00 = 1.26 to 2.68 °C — ATyi00 = 1.56 to 3.28 °C =
1 1 | L 1 1 I 1 1 1 1 I 1 1 1 1 : 1 1 1 1 | 1 1 L I 1 1 1 1 I 1 1 1 I: 0-8
0.0 -0.5 -1.0 -1.5 0.0 -0.5 -1.0 -1.5 -2.0
-2 =2
ERFAER,2019 (W M™) ERFAER,2019 (W M™)

Figure 6: GMST anomaly at the end of the century (AT2100) relative to a pre—industrial baseline for combinations of Az and
ERFaERr2019. Colors denote values of ATz2100 as indicated by the color bars on the right. Plots generated from EM-GC simulations
trained on the HadCRUTS GMST record, and use the AR6 ERF Framework. Only those combinations are colored where a good fit
on the HadCRUTS GMST record was found. (a) AT2100 for SSP1-1.9. (b) AT2100 for SSP1-2.6. (¢) ATz100 for SSP4—3.4. (d) ATz100 for
SSP2—4.5. Values of AT2100 for the Az — ERFagr grid within the Baseline Framework are shown in Fig. S2.

Table 1 details numerical values for AT»100 projections for the four SSPs. As described in Sect. 3.1, within the Baseline
Framework the historical GMST record can be fit with combinations of high As and strong aerosol cooling. This difference
results in a small shift in the upper boundary of AT»100, With values associated with the Baseline Framework being larger than
those for the AR6 Framework. Even though the climate record can be fit with much higher values of As within the Baseline
Framework, ERF projections within the AR6 Framework are much higher than in the Baseline Framework (Fig. 1i), which
offsets some of the Az — driven difference. For SSP2—4.5, the upper estimate of ATxi0 being 3.47 °C corresponds to a value of
As of about 2.5 W m 2 °C"! (Fig. S2) within the Baseline Framework. The upper boundary of ATzi90 = 3.28 °C is found at a
smaller climate feedback of about Az = 2.0 W m 2 °C™! for the AR6 Framework.
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Table 1: AT2100 for the four SSP scenarios studied. The first four rows correspond to data for the entire Ax—ERFagr, grid as shown
in Figs. 6 and S2. The last four rows are associated with the EM—GC probabilistic assessment, with values derived from PDFs in
Fig. 8 shown using the format of Median [5—-95% range].

SSP Scenario | Baseline Framework (°C) AR6 Framework (°C)
SSP1-1.9 0.73 t0 2.06 0.74 to 1.82
SSP1-2.6 0.93 to 2.58 0.94 t0 2.23
Full }\.Z—ERFAER,t gI‘ld
SSP4-3.4 1.15 to0 3.01 1.26 to 2.68
SSP2-4.5 1.42 t0 3.47 1.56 t0 3.28
SSP1-1.9 1.14 [0.81 to 1.87] 1.34[0.93 to 1.72]
SSP1-2.6 1.46 [1.05 to 2.28] 1.67 [1.18 to 2.13]
Median [5—95% range]
SSP4-3.4 1.80 [1.31 to 2.77] 2.10[1.54 to0 2.62]
SSP2-4.5 2.18[1.62 to 3.14] 2.60 [1.92 to 3.20]

Figure 7 shows our probabilistic forecasts of GMST in a time dependent fashion for the AR6 Framework. Time-dependent
projections of GMST for the Baseline Framework are in Fig. S3. Similar to AAWR and EffCS discussed above, the
probabilistic forecasts of the GMST anomaly are provided by weighting model results that provide good fits to the climate
record within the As—ERFagr grid. The weighting procedure uses the Gaussian functions that describe the assessed likelihood
of various values of RF of climate due to aerosols shown on the top panels of Fig. 3. The colors on Fig. 7 correspond to the
probability of the AT anomaly being equal to or greater than a given value. The figure also shows the HadCRUTS5 GMST
observations in black, as well as the likely range of warming for 2016 to 2035 provided by the authors of Chapter 11 of the
ARS report (Kirtman et al., 2013) in recognition of the fact that the CMIP5 models tended to over-estimate observed warming.
Gold horizontal lines represent the 1.5 °C and 2.0 °C GMST anomalies relative to pre—industrial, while gold circles correspond
to the years where the 1.5 °C and 2 °C thresholds are crossed with 5, 50 and 95% probability (hereafter termed crossover years).
The probabilistic GMST anomaly forecast using SSP1—-1.9 in the AR6 Framework lies below the 2 °C threshold until the end
of century throughout the ensemble (Fig. 7a), whereas the projection of GMST for SSP2—4.5 exceeds the 1.5 °C threshold in
all cases (Fig. 7d).
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Figure 7: Time-dependent probabilistic forecasts of the GMST anomaly beyond 2019 within the AR6 Framework. The black line
represents the HadCRUTS GMST record on which EM—GC was trained for these simulations, relative to an 1850—1900 baseline.
Colors represent the probability of reaching a certain temperature or higher at a given time, as indicated by the color bars on the
right. The green trapezoid represents the likely range of warming as shown in Fig. 11.25b of the IPCC ARS report (Kirtman et al.,
2013). The target and upper limit of the Paris Agreement are shown with horizontal lines in gold. Circle markers on these lines
correspond to the projected GMST anomaly crossing these thresholds with the probability indicated by the colors. (a) GMST
projections for SSP1-1.9. (b) GMST projections for SSP1-2.6. (c¢) GMST projections for SSP4-3.4. (d) GMST projections for
SSP2—-4.5. Results for the Baseline Framework are shown in the same fashion in Fig. S3.

Table 2 provides the year that temperature anomaly thresholds are crossed for the median as well as the 5" and 95
percentiles of the probabilistic forecasts of AT. Figure 8 shows the probability distribution functions (PDFs) of ATxi¢0. Results
for both the Baseline and AR6 Framework are shown in Table 2 and Fig. 8, although we generally discuss only the results
found for the latter. For the 5" percentile of the AR6 Framework, the 1.5 °C threshold is crossed in either 2028 or 2029 for all
four SSP scenarios. For the median member of our probabilistic forecasts, the 1.5 °C threshold is crossed in the years 2035,
2038, and 2043 for the SSP2—4.5, SSP4—-3.4, and SSP1-2.6 scenarios, respectively, whereas the 1.5 °C threshold is not crossed
for the median member of the SSP1—1.9 scenario. For the 95™ percentile of the forecasts within the AR6 Framework, the 1.5
°C warming threshold is crossed in 2055 and 2079 for the SSP2—4.5 and SSP4-3.4 scenarios, respectively, and is not crossed
for the other two scenarios. Here, the 5 percentile has more warming than the 95" percentile, due to the fact that Fig. 7 shows
probabilistic forecasts that AT will exceed a given amount.

Median projections of AT2190 within the AR6 Framework are found to be between 0.2 °C (SSP1-1.9, SSP1-2.6) and 0.4
°C (SSP2—4.5) greater than in the case of the Baseline Framework, mainly due to the larger projected anthropogenic ERF for
ARG (Fig. 1i). The PDF of AT»i00 for the AR6 Framework is narrower and shifted a bit to the right (higher chance of more
warming), compared to the Baseline Framework (Fig. 8), primarily due to two factors: the ability to obtain good fits to the
GMST anomaly at the highest values of climate feedback only for the Baseline Framework, and the larger weight given to

ensemble members with large, contemporary aerosol cooling in the AR6 Framework (Fig. 3).
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Our median, 5" and 95" percentile estimates of AT2100 (Table 1) agree well with the long-term warming assessed by AR,
for years 2081-2100. Table 4.5 of AR6, which uses Global Surface Air Temperatures (GSAT) rather than GMST, projects
warmings (median and 5-95% range) of 1.4 [1.0to 1.8 °C], 1.8 [1.3 t0 2.4 °C], and 2.7 [2.1 to 3.5 °C] for SSP1-1.9, SSP1-2.6
and SSP2—4.5, respectively. As described in Chapters 1, 2 and 4 of AR6 (Chen et al., 2021; Gulev et al., 2021; Lee et al.,
2021), GMST and GSAT differ by up to 10%, but the sign of the difference is highly uncertain. Our projections of end-of-
century warming and for crossing the 1.5 °C and 2.0 °C GMST thresholds are generally consistent with the GSAT-based
assessments of AR6 (Lee et al., 2021).

Finally, our study relies on SSP—based ERF data and does not factor in the significant decline of maritime sulfur emissions
(and connected change in ERFagr) caused by updated regulations on the sulfur content of ship fuels, introduced by the
International Maritime Organization (IMO) in 2020. Varying estimates exist on the magnitude of AERF gr from the new IMO
regulations and their impact on GMST/GSAT (Yuan et al., 2024; Skeie et al., 2024a; Quaglia and Visioni, 2024; Yoshioka et
al., 2024). The reduction in shipping emissions may have brought forward global warming by 2—3 years (Gettelman et al.,
2024; Jordan and Henry, 2024). Such a change would also help explain the unexpectedly high GMST anomalies of the year
2023, which have not otherwise been captured by climate model projections (Schmidt, 2024). The impact of IMO regulations
on GMST in our model framework will be quantified in a future study.

Table 2: Years of crossing the 1.5 °C and 2.0 °C GMST anomaly thresholds for the four SSP scenarios studied. For each entry, we
present the 50% probability as our central estimate, as well as the 5-95% range. The label “n.c” is used consistent with Table 4.5 of
ARG (Lee et al., 2021) and corresponds to a given threshold not being crossed in the 2020—-2100 period.

1.5 °C Crossover 2.0 °C Crossover
Baseline ARG6 Baseline ARG6
SSP1-1.9 n.c [2028 to n.c] n.c [2029 to n.c] n.c [n.c to n.c] n.c [n.c to n.c]
SSP1-2.6 n.c [2029 to n.c] 2043 [2029 to n.c] n.c [2059 to n.c] n.c [2065 to n.c]
SSP4-3.4 2048 2030 to n.c] 2038 [2029 to 2079] n.c [2050 to n.c] 2083 [2051 to n.c]
SSP2-4.5 | 2042 [2030 to 2080] | 2035 [2028 to 2055] 2082 [2047 to n.c] 2059 [2046 to n.c]
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Figure 8: Probability Distribution Functions (PDFs) for AT2100 obtained from EM—-GC simulations trained on the HadCRUTS
temperature dataset. Model runs for the Baseline and AR6 Frameworks are shown in blue and red, respectively. Grey color
represents the PDFs obtained from a CMIP6 multi—-model ensemble as described in Section 3.3.1 of McBride et al. (2021), and are
shown for comparison with EM—GC results. The left-hand y axis corresponds to the EM—GC probabilities, and the right-hand y
axis is for the CMIP6 probabilities. The PA target and upper limit are shown as solid and dashed vertical lines, respectively. (a)
PDFs for SSP1-1.9. (b) PDFs for SSP1-2.6. (c) PDFs for SSP4-3.4. (d) PDFs for SSP2—4.5.

Figure 8 also shows PDFs of ATzi90 from CMIP6 models. Consistent with many prior studies, including the Reduced
Complexity Model Intercomparison Project (Nicholls et al., 2020; Nicholls et al., 2021), the free-running CMIP6 models
exhibit larger end-of-century warming than projected by our model.

Tokarska et al. (2020b) reported that observationally constrained CMIP6 projections of end-of century warming are 9%
to 13% lower than unconstrained CMIP6 projections for SSP1-2.6 and SSP2—4.5, respectively. Tokarska et al. (2020b) found
the median and 5-95% ranges of end-of century warming relative to a 1995-2014 baseline to be 0.94 [0.41 to 1.46] °C and
1.84 [1.15 to 2.52] °C for SSP1-2.6 and SSP2—-4.5, respectively, using observationally constrained CMIP6 models. Our values
of ATz100 in Table 1, relative to 1995-2014, are 0.81 [0.32 to 1.27] °C and 1.74 [1.06 to 2.34] °C for SSP1-2.6 and SSP2—4.5.
Consequently, our quantification of AT»ig0 is in good agreement with the findings of Tokarska et al. (2020b). As for the
comparison with Fig. 4.2a of AR6 (Lee et al., 2021), it is important to highlight that our estimates use GMST, whereas Tokarska
et al. (2020b) presents (adjusted) GSAT. Therefore, some of the differences between the forecasts can be explained by the
difference in GSAT and GMST. Further, Chylek ef al. (2024) recently found GSAT to be 2.41 °C in the year 2100 for SSP2—4.5
using a set of CMIP6 models that accurately reproduce the 2014—2023 warming, about 0.5 °C smaller than the average obtained

from an unconstrained ensemble, in reasonably good agreement with our median estimate for AT 0f 2.6 °C.
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In summary, our projections of AT2190 using the EM—GC model, trained within the AR6 Framework, produces estimates
consistent with the output of observationally constrained CMIP6 models presented in numerous other studies. These estimates
were obtained assuming climate feedback is constant between 1850 and 2100 (thatis, &’ =0 W m™2 K™). The close consistency
between our AT»i0 projections and the prior literature provides confidence in the virtue of the assumption that climate feedback
has been mainly constant over the past century and a half, even though the actual values of climate feedback is not well known.
The interested reader is directed towards Sect. 3.3.6 of McBride et al. (2021), for projections of AT in our model framework

that allow the value of climate feedback to vary over time.

Table 3: EM—GC computed probabilities of achieving the Paris Agreement target (1.5 °C) and upper limit (2.0 °C). Columns with
the “Baseline” header represent EM—GC simulations using the Baseline Framework, while “AR6” represents simulations utilizing
the AR6 Framework. The values presented in this table are derived from the PDFs shown in Fig. 8.

Paris 1.5 °C Paris 2.0 °C
Baseline ARG6 Baseline ARG6
SSP1-1.9 81% 70% 98% 100%
SSP1-2.6 54% 32% 87% 85%
SSP4-3.4 21% 3% 65% 40%
SSP2-4.5 1% 0% 35% 8%

We conclude this section by evaluating the probability of achieving both the target (1.5 °C) and upper limit (2.0 °C) of the
Paris Agreement (PA). Table 3 provides the probability that end-of century warming will be below either the target or the
upper limit, relative to pre-industrial conditions. These estimates were obtained from our probabilistic forecasts of AT, for both
the Baseline and AR6 Frameworks (Fig. 8). As shown above, median projections of ATzio are larger within the AR6
Framework relative to the Baseline for all four SSPs, which leads to a decline in the probability of accomplishing the PA
within the AR6 Framework (Table 3). For the SSP1-1.9 and SSP1-2.6 scenarios, the probability of limiting global warming
to 2.0 °C is high (at least 85%) for both model frameworks. For SSP4—3.4, the probability of limiting warming to 2.0 °C falls
from 65% (Baseline) to 40% (AR6). Most notably, the 2.0 °C probability drops from 35% to 8%, for the SSP2—4.5 scenario.
The 1.5 °C warming probabilities for the AR6 Framework are all uniformly lower than for the Baseline Framework, with the
SSP1-2.6 scenario dropping from 54% (Baseline) to 32% (AR6). The takeaway message from Table 3 is that, for society to
have high confidence in achieving at least the upper limit of the PA, the radiative forcing of climate due to GHGs must be
placed close to the SSP1-2.6 pathway over the coming decades. More aggressive reductions in GHG radiative forcing are

needed to achieve the target of the PA, such as those of the SSP1—1.9 scenario.
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4 Conclusions

The extent of global warming is proportional to the ERF from greenhouse gases and tropospheric aerosols. In this work, we
use a multiple linear regression energy balance model (EM—GC) to quantify how updates to the ERF formulations of GHGs
and tropospheric aerosols adapted by the IPCC ARG report (termed AR6 Framework in our study) impact estimates of climate
sensitivity and projected future warming compared to forecasts made based on pre—ARG6 datasets (Baseline Framework). Our
study focuses on four policy-relevant SSP scenarios: SSP1—-1.9, SSP1-2.6, SSP4-3.4 and SSP2—4.5 (O'Neill et al., 2014;
O'Neill et al., 2016). Our model framework has two key elements: numerical representation of ocean heat export as well as the
impact of uncertainty in radiative forcing due to tropospheric aerosols. The numerical values given below are results based on
160,000 member ensembles for each SSP.

First, we compare ERF for GHGs and tropospheric aerosols between the two Frameworks. We find that the projected ERF
due to GHGs — particularly CO; and CH4 — is considerably higher in the AR6 Framework relative to the Baseline, for all four
of the SSP scenarios. This increase in ERFgrg originates from the updated assessments of future concentrations as well as
updates to the formulations of ERF due to GHGs in AR6, in combination with updated adjustments to the RF of GHGs that
now include responses throughout the troposphere, in addition to the stratosphere (Smith et al., 2018b; Hodnebrog et al., 2020;
Meinshausen et al., 2020; Forster et al., 2021; Smith et al., 2021a; IPCC, 2021b). End-of-century ERF is found to be up to 0.7
W m2 higher within the AR6 Framework relative to the Baseline for SSP2—4.5. While some minor deviation of end-of-century
ERF from the nameplate RF value of SSP scenarios is expected (Van Vuuren et al., 2014), the AR6 Framework results in a
level of increase in ERF such that end-of-century values are considerably larger than the nameplate RF for all four SSP
scenarios.

The magnitude of Effective Climate Sensitivity (EffCS) inferred from the historical GSMT record was found to be 2.29
[1.54 to 3.11 °C, 5-95% range] within the AR6 Framework, and 2.26 [1.45 to 4.37 °C] for the Baseline Framework. The
median value of EffCS is nearly identical between the two Frameworks, and there is a much narrower range within the AR6
Framework. Equilibrium Climate Sensitivity (ECS) is estimated to be 3.24 [1.92 to 5.15 °C] within the AR6 Framework, using
the ARG best estimate for the pattern effect (0’ = 0.5 W m 2 K ™). This estimate of ECS is quite similar to the AR6 assessment
of 3.0 [2.0 to 5.0 °C] given in Table 7.13 of Forster et al. (2021). Overall, our estimates of EffCS and ECS within the AR6
Framework compare very well with values reported by several other recent studies (Armour et al., 2024; Cooper et al., 2024;
Skeie et al., 2024b). The rate of human—induced warming between 1974 and 2014 (AAWR) was found to be 0.18 [0.13 to 0.21
°C decade™'] within the AR6 Framework, a slight increase relative to the central estimate and range of 0.16 [0.12 to 0.20 °C
decade™] for the Baseline Framework. Our estimate of AAWR within the AR6 Framework is also consistent with other recent
studies (Gulev et al., 2021; Forster et al., 2023; Samset et al., 2023).

Our projections of GMST show good consistency with GSAT estimates from observationally constrained CMIP6
ensembles but fall below the estimates of global warming when considering unconstrained CMIP6 ensembles. Overall, our

estimates of EffCS, ECS, AAWR and end-of century warming using the AR6 Framework are all consistent with values found
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by CMIP6 models that accurately reproduce observed warming trends over the past three or four decades. Our work highlights
the importance of ensuring that CMIP6 models used for policy purposes succeed in reproducing observed trends in GMST.

Our probabilistic projections on future warming consider the uncertainty in the magnitude of ERF from tropospheric
aerosols, as assessed by AR6 and AR5, for the AR6 and Baseline Frameworks, respectively. Global warming projections that
utilize the uncertainty in aerosol ERF is a common product of RCMs (Nicholls et al., 2020; Nicholls et al., 2021; Hope et al.,
2017; McBride et al., 2021) and is not usually found using GCMs due to the computational demand of global models. Median
projections on end-of century warming using our RCM, are higher by 0.2 °C to 0.4 °C within the AR6 Framework relative to
projections found in the Baseline Framework. This increase corresponds to a general decline in the likelihood of limiting
warming to the Paris Agreement (PA) thresholds, for the AR6 Framework compared to the Baseline. Notably, model
simulations using SSP2—4.5 and SSP1-2.6 — which reflect trends in the absence of further climate policies and full
implementation of currently proposed emission targets (Meinshausen et al., 2024) — are found to offer 32% and 0% chance of
accomplishing the PA target of limiting the rise in GMST to 1.5 °C by 2100. Model simulations conducted using the SSP4-3.4
(intermediate scenario between SSP1-2.6 and SSP2—4.5) and SSP1-1.9 (aggressive future reductions in GHG emissions)
show probabilities of 3% and 70% of limiting warming to 1.5 °C by end-of-century. The likelihood of limiting warming to the
PA upper limit of 2.0 °C is found to be 40% and 8% within the AR6 Framework for SSP4-3.4 and SSP2—4.5, respectively.
There is high confidence (85% and 100% probabilities) that global warming could be limited to 2.0 °C if the radiative forcing
of climate due to GHGs could be placed on either the SSP1-2.6 or SSP1-1.9 pathways.

5 Data availability

All data used as inputs of EM—GC are available from online resources. We have provided the links to these datasets below.
The compiled input files used by EM—GC are also provided on Zenodo.org at 10.5281/zenodo.14720490 (Farago et al., 2025).
The EM—GC output data is also provided in this Zenodo repository.

e SSP database (Baseline Framework): https://tntcat.iiasa.ac.at/SspDb/

e Tropospheric O3 RF (Baseline Framework): https://www.pik-potsdam.de/~mmalte/rcps/
e ARG Radiative Forcing (AR6 Framework): https://doi.org/10.5281/zenodo.5705391

e MEIv2 and MEI.ext: https://psl.noaa.gov/enso/mei/ and https://psl.noaa.gov/enso/mei.ext/

e  PDO: http://research.jisao.washington.edu/pdo/PDO.latest.txt

e COBE SST data used to construct the IOD time series is available at: https://psl.noaa.gov/data/gridded/data.cobe.html
e GloSSAC SAOD: https://asdc.larc.nasa.gov/project/GloSSAC

e  TSI: https://lasp.colorado.edu/sorce/data/tsi-data/
e  OHC Records:

o Balmaseda: https://www.cgd.ucar.edu/cas/catalog/ocean/oras4.html

o  Carton: https://www2.atmos.umd.edu/~ocean/soda3_readme.htm
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o Cheng: http://www.ocean.iap.ac.cn/pages/dataService/dataService.html?navAnchor=dataService

o Ishii: https://www.data.jma.go.jp/gmd/kaiyou/english/ohc/ohc_global en.html

o Levitus: https://www.ncei.noaa.gov/access/global-ocean-heat-content/
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